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Abstract. The dataset presented here consists of an ensemble of ten global hydrological and land surface models for the

period 1979–2012 using a reanalysis-based meteorological forcing dataset (0.5◦ resolution). The current dataset serves as a

state-of-the-art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A

signal-to-noise ratio analysis revealed low inter-model agreement over (i) snow-dominate regions and (ii) tropical rainforest and

monsoon areas. The large uncertainty of precipitation in the tropics is not being reflected in the ensemble runoff. Verification5

of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly

and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB) showed

overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results

also show that there is currently no single best model for all variables and that model performance is spatially variable. In

our unconstrained model runs the ensemble mean of total runoff into the ocean was 46268 km3/yr (334 kg/m2/yr) while the10

ensemble mean of total evaporation was 537 kg/m2/yr. All data are made available openly at through a Water Cycle Integrator

portal (WCI, wci.earth2observe.eu), and via a direct http and ftp download. The portal follows the protocols of the open

geospatial consortium such as OPeNDAP, WCS and WMS. The doi for the data is: doi:10.5281/zenodo.167070

1

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 6 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



1 Introduction

Water security concerns all global economies, rich and poor (Collins et al., 2009; McDonald et al., 2011; Hansen et al., 2012).

At the same time water availability in many areas is decreasing due to demographic and climatic changes (Faures, 2006)

which can influence agriculture (Rijsberman, 2006) but also industry and energy through its influence on cooling water and

hydropower (Van Vliet et al., 2011; van Vliet et al., 2016). This combination stresses the need for a holistic (integrated)5

approach to water resources management and decision making for flood protection, food and water security, energy and large-

scale (re)forestation. Such an approach requires the integration of information on water availability, demand and quality at all

scales, and must be supported by an improved assessment of water resources and predictive understanding of the water and

energy cycles (UN, accessed 2016). Yet, the availability of this information is lacking in many regions of the world (Pozzi

et al., 2013). To capture the uncertainty that stems from the simplifications and assumptions in our models, a global reanalysis10

dataset of water resources should contain a large number of global hydrological and land surface models that assimilate the

most important satellite-based products (Sood and Smakhtin, 2015). This should be available as a reference for local studies

and for the support of policy and decision making for transboundary watersheds and for global applications such as flood risk

analysis (Trigg et al., 2016) for which the global land surface and hydrological models are the key components.

Only a limited number of global reanalysis datasets that can support water resources analysis is available (e.g. GLDAS,15

Houser et al. (2001), GSWP-2 Dirmeyer et al. (2006), MERRA-Land Reichle (2012), ERA-Land Balsamo et al. (2015) but

also van Dijk et al. (2014) and WATCH, Haddeland et al. (2011)). In these, only Haddeland et al. (2011) combine both global

land surface models and global hydrological models into a single multi-model ensemble. They used a global meteorological

forcing dataset called the WATCH Forcing data (Harding et al., 2011; Weedon et al., 2011), covering the period 1901–2001,

created by optimizing the ERA-40 reanalysis dataset (Uppala et al., 2005) with global gridded datasets of in-situ meteorological20

measurements. More recently the WATCH dataset has been extended to the year 2014 using the same optimisation method in

combination with the newer ERA-interim reanalysis dataset named WFDEI (Weedon et al., 2014).

We use the WFDEI dataset to force a set of ten global models, both land surface models (LSMs) and global hydrological

models (GHMs). By using a sizeable set of models we take steps to mitigate some of the errors and uncertainties that are

introduced in individual models by the simplified representation of spatially heterogeneous real world processes like water25

and energy balances, river routing and seasonal varying vegetation cover (Beven and Binley, 1992; Vrugt et al., 2005; Gosling

et al., 2010). As a general principle, this is superior to the results of any individual model and as good as or better than the best

model at each point and time (Dirmeyer et al., 2006; Harding et al., 2011). However, this does not necessarily mean that this is

the case for the set of models that we use or that some models do not perform considerably better in specific locations, climatic

conditions or for specific variables (e.g. runoff) than others.30

The multi-model ensemble presented here inherits a number of models from the WATCH project supplemented by additional

models, a new forcing dataset (WFDEI), a WFDEI-derived reference potential evapotranspiration dataset and a new modelling

protocol. Furthermore, we introduce the data repository where the results are stored in an open format including all data needed

for other groups to perform a similar exercise. In the end this can contribute to a better understanding of the characteristics
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of the increasing number of global models (Bierkens, 2015). The repository comes with (downscaling) tools and river basin

management models such as WaterWorld (Mulligan, 2012) to increase usage of the data at the basin scale outside of the

research community.

In this paper we present the first version of the dataset, which is based on the current state-of-the-art of the contributing

modelling systems and will provide a benchmark to evaluate improvements made to the models and forcing data in the coming5

years. The main goal of this paper is to provide an overview of the multi-model dataset and to address the following two

questions: (i) is the ensemble mean superior to the individual models given the diverse set of models, and if so, for which

variables, and (ii) is the current modelling protocol with one forcing dataset and the selected output variables sufficient for

evaluation of (global) water resources.

First, we describe the methods and models we have used. Secondly, we investigate the characteristics of the resulting dataset10

using the multi-model signal-to-noise ratio to investigate multi-model agreement and the tools from The International Land

Model Benchmarking Project (ILAMB, Luo et al., 2012; Mu et al., 2016) to compare the model output to reference datasets

for evapotranspiration, total water storage, soil moisture, snow water equivalent and snow cover. Thirdly, the continental water

budget is used to compare the results with previous efforts. Finally we present conclusions and an outlook for further versions

of this dataset.15

2 Methodology and modelling protocol

Each of the used models produced results for the period 1979–2012 based on the provided meteorological forcing. In total

ten models were used, both large-scale hydrological models and land surface models with extended hydrological schemes

(see the list below and Table 1), all running offline (i.e. not connected to an atmospheric model) while driven by the same

reanalysis-based forcing dataset. Given the different nature of the models a single spin-up procedure was not feasible. The20

spin-up procedure was chosen for each model individually to match each model’s requirements with the goal to best represent

the climatic conditions over the simulation period.

HTESSEL-CaMa represents the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (Balsamo et al., 2009).

The runoff produced by the land surface scheme is routed with the Catchment-based Macro-scale Floodplain model

CaMa-Flood (Yamazaki et al., 2011). A 10-year spin-up was carried out: an initial run from 1979-01-01 to 1989-01-0125

while the land surface state of Jan 1989 was used to initialise the main simulation.

JULES is the Joint UK Land Environment Simulator, (Best et al., 2011; Clark et al., 2011), a community land surface model

that has evolved from the Met Office Surface Exchange Scheme (MOSES). It includes an additional saturation excess

runoff production using a Probabilistic Distributed Model (Moore, 2007) approach. A 10-year spin-up was carried out:

an initial run from 1979-01-01 to 1989-01-01 while the land surface state of Jan 1989 was used to initialise the main30

simulation.
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LISFLOOD (Van Der Knijff et al., 2010) is a spatially distributed, grid-based rainfall-runoff and channel routing model that

has been designed primarily for the simulation of the water cycle in large river basins. The model is made up of a two-

layer soil water balance sub-model, sub-models for the simulation of groundwater and subsurface flow, a sub-model for

the routing of surface runoff to the nearest river channel, and a sub-model for the routing of channel flow. The model

was initialised by running the full 1979–2012 period before starting the main run.5

ORCHIDEE is a land surface scheme resulting from the coupling of the SECHIBA land surface scheme and the carbon and

vegetation model STOMATE. It consists of a hydrological module (Krinner et al., 2005) and a routing (Ngo-Duc et al.,

2007) and floodplain module (d’Orgeval et al., 2008). The model was spun up with a simulation from 1979-01-01 to

1990-12-31. This simulation started with an average soil moisture and empty aquifers. After the 12 years of spin-up,

river discharges have reached equilibrium.10

PCR-GLOBWB (Bierkens and Van Beek, accessed 2015; van Beek et al., 2011; Wada et al., 2014) is a leaky bucket global

hydrological model providing a regular grid-based representation of terrestrial hydrology. The routing is based on a

computationally efficient travel time approach, where volumes of water are transported over a characteristic distance

along the drainage system (Deursen, 1995). A 68-year spin-up was carried out by performing two initial back-to-back

runs from 1979 to 2012 prior to the definite run.15

SURFEX-TRIP uses the ISBA multi-layer land surface model to compute the soil/snow/vegetation energy and water budgets

(Decharme et al., 2010, 2013) and the TRIP river routing model to simulate the river flow at the global scale. A 20-year

spin-up was carried out using the 1979–1988 period two times.

SWBM (Simple Water Balance Model) is a global model that derives soil moisture, evapotranspiration (ET) and runoff from

meteorological information alone, i.e. does not use any information on soil or vegetation characteristics (Orth and Senevi-20

ratne, 2013). The model parameters have been determined by calibrating the model against multiple reference datasets in

Europe. These spatially uniform parameters were applied globally to derive the eartH2Observe simulations. The spin-up

was done by running the first year 5 times. The resulting soil moisture and snow fields were then used to start the actual

simulation.

W3RA (world-wide water resources assessment) is based on the landscape hydrology component model of the AWRA sys-25

tem (AWRA-L version 1.0; Van Dijk (2010); van Dijk et al. (2014)). AWRA-L can be considered a hybrid between a

simplified grid-based land surface model and a nonspatial (or so-called ’lumped’) catchment model applied to individual

grid cells (model code available at http://www.wenfo.org/wald). Spin-up was carried out using the entire 1979–2012

modelling period before the final runs.

WaterGAP3 , Water – Global Assessment and Prognosis-3 is a grid-based, integrative global freshwater resources assessment30

tool. It consists of a spatially-distributed rainfall-runoff model, five sectorial water use models, and a large-scale water

quality model (Flörke et al., 2013; Döll et al., 2009). Storage compartments were initialised by re-running the model

with the first year of available meteorological forcing ten times.

5
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HBV-SIMREG is the simple conceptual HBV hydrological model (Lindström et al., 1997) with optimised parameters derived

using a novel regionalisation scheme in which calibrated parameters are transferred to grid cells with similar character-

istics to produce parameter maps with global coverage (Beck et al., 2016b). For each grid cell, we used calibrated

parameters from the ten most similar catchments and averaged the ensemble of model outputs. The model was initialised

using the first ten years of the forcing data before starting the main run.5

HBV-SIMREG, SWBM, LISFLOOD and WaterGAP3 all have been calibrated in previous studies based on observed runoff

data, although these calibration efforts were done with different forcing datasets (see the respective model papers listed above).

The other models rely on a priori parameter estimation alone.

The data used to force the models was the WFDEI dataset (Weedon et al., 2011, 2014) that comprised the period between

and including 1979 and 2012 and contains both three-hourly time intervals and daily time intervals. WFDEI is based on the10

ECMWF ERA-Interim reanalysis (Dee et al., 2011b) with a spatial resolution of 0.5◦, and is corrected with the CRU dataset

(Harris et al., 2014b) using a sequential elevation correction of surface meteorological variables plus monthly bias correction

from gridded observations. Compared to the original WFDEI dataset we applied several data formatting changes to facilitate

its usage, storage and dissemination. In order to avoid land-sea mask problems with different models all oceans were filled with

data from the original ERA-Interim for all variables apart from precipitation for which the ERA-Interim/Land dataset was used15

(Balsamo et al., 2015). Furthermore, the files were reformatted to netCDF4 and some metadata attributes have been modified

to comply with the Climate and Forecast (CF) conventions. Table 2 provides an overview of the WFDEI variables used in this

study.

A list of the most important output variables is presented in Table 3. If a model does not represent a process, the associated

variables are not available in the dataset. The water and energy fluxes follow the mathematical convention, i.e. positive onto20

the surface and negative away from the surface (see details in Table 3). For example, runoff has a negative signal. Although

most models can only supply a subset of the requested variables listed in Table 3 we have defined this rather large number of

variables so that specific fluxes/stores from models that can supply those can be used for analysis later on.

Similar to other global forcing datasets (cf., Li and Ma, 2010; Rust et al., 2014; Sheffield et al., 2006; Rienecker et al.,

2011a), the WFDEI forcing contains a number of problems. For WFDEI we identified: (i) The rainfall in Gabon in Africa25

seems to be unrealistically high. A likely reason for this could be a unit error in the reported precipitation. (ii) There are some

concerns about the energy forcing terms of WFDEI (SWdown, LWdown) over the Amazon region (an underestimation of

SWdown and overestimation of LWdown, coming from the ERA-Interim data). (iii) In a number of timestamps there is some

incoming radiation noise at night time (about 0.05 W/m2), also inherited from the original ERA-Interim data, resulting from the

processing of the fluxes archived by the atmospheric model in ERA-Interim. (iv) Large positive values of SWdown > 5 W/m230

at night time in some islands and coastal points introduced during the WFDEI data processing. (v) A total of nine grid points

out of 67,209 were found with a substantial conversion of liquid rainfall (in ERA-Interim) into snowfall (in WFDEI). For some

models, this can lead to a continuous accumulation of snow over those points. Although some of these problems could have

been addressed it was decided to keep the original WFDEI dataset to guarantee consistency with other studies in the literature.
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Table 2. Overview of the meteorological forcing used in the simulations, and the corrections applied to the original ERA-Interim during the

WFDEI processing (Weedon et al., 2014)

Variable Definition Units Corrections

Wind Wind speed at a reference level near

the surface - 10 meters

m s−1 None

Tair Temperature at a reference level

near the surface - 2 meters

K Elevation using lapse rate; CRU average

Tair and average diurnal temperature range

Qair Specific humidity at reference level

near the surface - 2 meters

kg kg−1 Via changes in Tair and PSurf

PSurf Pressure at the surface Pa Via changes in Tair

SWdown Average Incident radiation in the

shortwave part of the spectrum

W m−2 CRU average cloud cover and effects of

inter-annual changes in atmospheric aerosol

loading

LWdown Average Incident radiation in the

longwave part of the spectrum

W m−2 Via fixes in relative humidity and changes

in Tair, PSurf and Qair

Rainf Average rainfall (only liquid phase) kg m−2 s−1 CRU number of wet days and precipitation

totals

Snowf Average snowfall (only solid phase) kg m−2 s−1 CRU number of wet days and precipitation

totals

The simulations were performed from the 1st of January 1979 to the 31st of December 2012 in a continuous run. With

respect to static fields (e.g. soil physical parameters, land cover type) each modelling group used their own datasets, as this

is considered to be part of the modelling system, and exchanging these fields between models is not straightforward. Two

simple quality control tests were applied to the data: (i) generic metadata and quality control (including mass balance checks);

(ii) comparison of minimum, maximum and mean fields. The first test is automatic (script available at: https://github.com/5

earth2observe/project-tools), while the second relies on the inspection of aggregated statistics.

To ensure uniform input and use of the data the project’s servers have been configured to host the forcing data and also

provide an interchange platform for the project using a THREDDS data server (Domenico et al., 2006). This server is also used

to distribute the data to the rest of the world and includes an interactive portal (http://wci.eartH2Observe.eu). The flow of data

for the current model runs is depicted in Figure 1. Direct access to the THREDDS server is available at http://wci.earth2observe.10

eu/thredds/catalog.html while a mirror of the data is hosted at http://al-tc002.xtr.deltares.nl:8080/thredds/catalog.html.

All model outputs passed the metadata consistency checks. The simulations from WaterGAP3, PCR-GLOBWB and JULES

have grid-points with residuals above the defined threshold (5.0E-6 kg/m2/s) due to the water transport in the river network

that is not accounted for in the water balance calculations, but the water balance is closed on a basin scale. For the second

data quality check the temporal and global spatial minimum, maximum, mean and standard deviation were computed for all15

variables and compared among the different models using the monthly data. This allowed the identification of several problems
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WCI Data Storage and Exchange

Land Surface/Hydrological 
model output

0.5 x 0.5 degree

WFDEI Forcing data

0.5 x 0.5 degree

EO Data products and 
derived data

Data access Methods/Protocols

FTP
server

THREDDS Data Server

OpeNDAP WCS WMS HTTP

cf- Compliant 
netCDF files

Public Access

Modeller
Community

Add 
products

https://wci.earth2observe.eu/portal

rsync
mirror

Figure 1. Flow of input and model data via the eartH2Observe Water Cycle Integrator (WCI). All data is accessible to users via a number of

open protocols and a tailor-made user interface at http://wci.earth2observe.eu

(e.g. different signal conventions for the fluxes, numerical/rounding errors, etc.) that were corrected directly in the data server

or by each institution.

3 Dataset characteristics

3.1 Multi-model signal-to-noise ratio

An important component of a multi-model dataset is the possibility to characterise the multi-model agreement or consistency.5

While such characteristics do not imply quality or skill, it can provide an overview of the regions and variables where datasets

strongly disagree. This information can be used either by the modelling community to focus on particular aspects of their

models or by users as a first order uncertainty estimate of the multi-model ensemble. The agreement metric selected here is

the signal-to-noise ratio (SNR), which compares the signal to noise levels by relating the ensemble’s variance to that of the

individual members, which has been widely used as a classical measure of predictability in seasonal forecasting (Kumar and10
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Hoerling, 2000). SNRs were calculated for three model variables: evapotranspiration, runoff and root zone soil moisture plus

an ensemble of global precipitation datasets. See the supplementary material for a detailed description of the SNR calculations.

We performed the calculations with monthly mean anomalies to focus on the model agreement in terms of intra-seasonal

to inter-annual variability. Since all models were driven by the same atmospherical conditions, low values of SNR can be

directly associated with differences in the representation of processes such as energy partitioning, runoff generation etc.; i.e.5

ensemble uncertainty. However, since one single forcing was used, the ensemble is missing an important source of uncertainty:

the driving data. Precipitation is likely the main source of uncertainty; it is very important for the terrestrial water balance while

at the same time it is difficult to observe both locally and remotely. To put our results into perspective, we also computed the

SNR of an ensemble of precipitation datasets including three atmospheric reanalysis datasets (ERA-Interim: Dee et al., 2011a,

JRA55: Kobayashi et al., 2015, MERRA: Rienecker et al., 2011b), two datasets based on rain gauges (GPCC: Schneider et al.,10

2011, CRU TS3.10: Harris et al., 2014a) and two datasets derived from remote sensing data (GPCP: Adler et al., 2003, CMAP:

Xie and Arkin, 1997).

The SNRs were computed for the period January 1980 to Dec 2012 by removing the mean annual cycle in each grid-

point from each ensemble member such that y and yi are both equal to zero, see Appendix 1. Due to the differences in the

representation of soil moisture storage among the models, the ensemble mean is dominated by those models with a higher15

water holding capacity and hence larger absolute soil moisture variability. Therefore, the root zone soil moisture was first

transformed to percentiles before performing the calculations for each model (c.f. Wang et al., 2011). The SNR varies between

0 and +∞ with values below 1 indicating that the inter-model variability is larger than the ensemble mean variability, i.e. low

inter-model agreement, and values above 1 indicating a high inter-model agreement.

The multi-model consistencies in terms of inter-annual variability evaluated by the SNR are shown in Figure 2a-c for the20

different variables, and aggregated by climate types in Figure 3a-c. The results highlight regions with a low inter-model agree-

ment over (i) snow-dominated regions (runoff, evapotranspiration and root zone soil moisture) and (ii) tropical rainforest and

monsoon regions (evapotranspiration), whereas the temperate areas show a high inter-model agreement. Comparing these re-

sults with the precipitation datasets agreement (Figure 2d and 3d), the large uncertainty in the tropical areas is not reflected

in the runoff or root zone soil moisture. On the other hand, there is little disagreement in the precipitation datasets in cold25

regions, which could be caused by the fact that in these regions we rely mostly on reanalysis data sources, while the multi-

model ensemble contains a large spread. The SNRs suggest that over cold regions the multi-model ensemble is generating a

large spread (likely due to the different treatment of cold processes among the models) while over the tropical areas some of

the multi-model agreement might be underestimating the actual uncertainty by neglecting the driving data uncertainty in the

ensemble generation.30

3.2 Verification with external datasets

We use the ILAMB system (The International Land Model Benchmarking Project, Luo et al. (2012); Mu et al. (2016)) to

compare the model results against benchmark data mostly derived from satellite remote sensing, of evapotranspiration (ET),

terrestrial water storage anomaly (TWSA), soil moisture anomaly (SMA), snow water equivalent (SWE) and snow cover
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Figure 2. Signal-to-noise ratio of monthly mean anomalies of Evapotranspiration (a), Runoff (b), Root Zone Soil Moisture (c) and Precipi-

tation (d)

Figure 3. Distribution of the signal-to-noise ratio of monthly anomalies over different BIOMES(horizontal axis, see Figure 4) for Evapo-

transpiration (a), Runoff (b), Root Zone Soil Moisture (c) and Precipitation (d).
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Figure 4. BIOMES used in calculating regional averages. These are: AUST (Australia), EQAS (Equatorial Asia), SEAS (Southeast Asia),

CEAS (Central Asia), BOAS (Boreal Asia), SHAF (Southern Hemisphere Africa), NHAF (Northern Hemisphere Africa), MIDE (Middle

East), EURO (Europa), SHSA (Southern Hemisphere South America), NHSA (Northern Hemisphere South America), CEAM (Central

America), TENA (Temperate North America) and BONA (Boreal North America)

fraction (SC). For evapotranspiration both the GLEAM-V2a and V3b datasets (Miralles et al., 2011; Martens et al., 2016)

and the MODIS evapotranspiration estimates (Mu et al., 2011) were used while for soil moisture anomaly we used the com-

bined active+passive microwave ESA CCI soil moisture dataset (Dorigo et al., 2015, 2012). The snow cover dataset was

obtained from the Interactive Multisensor snow and ice mapping System (IMS; Ramsay 1998; Helfrich et al. 2007) while

for SWE we used GLOBSNOW-2 (Takala et al., 2011; Pulliainen, 2006). The TWSA dataset was obtained from GRACE5

data (JPL, Landerer and Swenson 2012). The complete benchmark results are available at the dataset storage entry page at

https://github.com/earth2observe/water-resource-reanalysis-v1 while a summary is given in Appendix 2, Table 6 to Table 11.

ILAMB provides a scoring system to relate modelled results to reference datasets. In the ILAMB system multiple perfor-

mance metrics are calculated, and additionally these metrics are converted to scores ranging between 0 and 1 to facilitate

comparison and averaging. In this study three performance metrics are calculated for each of the five model variables eval-10

uated (ET, TWSA, SMA, SWE, SC): total bias, root mean square error (RMSE) and phase difference (in months difference

between peak values); furthermore a total of five 0-1 scores are calculated, for global bias, RMSE, seasonal cycle, spatial dis-

tribution and inter-annual variability, plus a 0-1 overall score that summarises them. The metrics and scoring are explained in

detail in the ILAMB documentation (http://earth2observe.github.io/water-resource-reanalysis-v1/assets/pdf/ILAMB_metrics_

document.pdf). For the case of anomaly variables (TWSA and SMA), the bias and spatial distribution scores are calculated15

over the standard deviations of the variables, and not directly over the anomalies. The current study is not an exhaustive test

of the performance of the different models, instead we focus on the multi-model ensemble, commenting on specific models

only when this is thought to be important to the ensemble as a whole. Apart from the global level, the ILAMB results are also

available for a number of predefined regions (biomes, see Figure 4).
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Although there are a number of uncertainties associated with TWSA as estimated by GRACE measurements (Long et al.,

2014; Riegger et al., 2012), the results are not dependent on a meteorological forcing or hydrological models. Both the peak

month phase difference and the ensemble mean bias are negative for most models compared to GRACE (See Figure 5). RMSE

is largest in high-precipitation regions and lowest in dry areas (Figure 5, bottom panel). Overall, total scores for TWSA are

close between the models while the highest values are recorded for the ensemble mean suggesting that the lowest scoring5

models do not have a large detrimental effect on the ensemble mean. Results for the WaterGAP3 model should be interpreted

with caution because TWS is not a direct output of the model but estimated summing SWE, surface water storage and root zone

soil moisture. Although the scores for the TWSA (ranging between 0.49 for SWBM and 0.60 for HTESSEL) are similar at

the global level, there are larger differences between the models at the regional level. The negative phase difference for nearly

all models indicates that the peak in the anomaly in the models occurs earlier than in the GRACE data. This could point to a10

general underestimation of the TWS (for example the groundwater component) resulting in a system that reacts too quickly.

In addition, the negative phase difference is strongest in the cold regions indicating the snow modelling might be an important

factor here. There are large regional differences in the phase difference performance showing best results in Africa (below the

Sahel), Australia, India, and South America north of 25oS. There is no single model that performs best in all regions.

For evapotranspiration our results compare better to the GLEAM products (mean model total score of 0.83 for both products)15

but less so to the MODIS product (mean model score of 0.78, see Table 4). Most models (and the ensemble mean) evaporate

more water than the remote sensing based estimates. As shown by Miralles et al. (2016) it is still difficult to determine the

quality of global ET products. The driving force behind the ET estimates by the multi-model ensemble is provided by the

WFDEI (based on ERA-Interim) which is shown to have relatively high ET (Miralles et al., 2016). It is beyond the scope

of the current study to examine the differences in ET between the models, but the choice of calculation method of potential20

ET within the models may already account for a large spread (see e.g. Weiland et al. (2015) who used the WFDEI forcing to

calculate FAO Penman Monteith reference evapotranspiration (ET) (Allen et al., 1998), Priestly Taylor reference ET (Priestley

and Taylor, 1972) and Hargreaves reference ET (Hargreaves and Samani, 1982; Hargreaves and Allen, 2003; Sperna Weiland

et al., 2012)). The method used to estimate net radiation may also play a large role. Although the results show that the ensemble

mean provides best overall performance, the spread in ET is large (between 1.66 and 1.33 mm/day).25

All models provided SWE while only six models provided SC. Total performance against the reference dataset was highest

for ORCHIDEE, WaterGAP3 and LISFLOOD although the Bias is fairly large for all models (see Figure 6). The phase differ-

ence seems to be influenced most by rather poor scores in the Himalaya. The total ensemble mean score for SWE is 0.67 which

is lower than the highest model score of 0.74 suggesting that in this case the model mean should be used with care. In addition,

a number of models show an unrealistic build-up of snow over time in Europe (HBV-SIMREG and PCR-GLOBWB), Boreal30

North America (HTESSEL, HBV-SIMREG, PCR-GLOBWB), Central Asia (HTESSEL, HBV-SIMREG) and Southeast Asia

(HTESSEL, JULES, LISFLOOD). This may be caused by the fact that the models have been driven by a different dataset

(with different temperature and radiation characteristics) than what they have been developed with. Snow cover fraction (SC)

estimated by the models compares well to the IMS results. Here SURFEX-TRIP performs best but performance in general is
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Figure 5. Terrestrial water storage anomaly metrics for the ensemble mean, from top to bottom: Std of BIAS, Phase difference (months) and

Root Mean Square Error
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Table 4. Model mean Evapotranspiration compared to the MODIS and GLEAM-V2a/GLEAM-V3b products. The difference in model

annual mean ET in the comparison between the three models is due to different periods used for the comparison (GLEAM-V2a 1980-2011,

GLEAM-V3b 2003-2012, MODIS 2000-2012)

Annual mean Bias RMSE Phase difference Overall Score

mm/day mm/day mm/day months -

GLEAM-V2a 1.31 - - - -

GLEAM-V3b 1.27 - - - -

MODIS 1.28 - - - -

Model mean (GLEAM-V2a) 1.46 0.15 0.37 -0.31 0.83

Model mean (GLEAM-V3b) 1.48 0.21 0.30 -0.06 0.83

Model mean (MODIS) 1.48 0.20 0.49 -0.23 0.78

much closer compared to the SWE results and the ensemble mean seems to provide a good estimate. Getting the phase correct

in the Himalayan region seems to be the most challenging parameter for the models (See Figure 7).

Although current satellite-derived surface soil moisture products that cover a long period have a number of limitations

(Su et al., 2016; Loew et al., 2013), and are also not completely model-independent, they have been shown to capture intra-

and inter-annual soil moisture variability, and this variability is not dependent on an external atmospheric forcing dataset. In5

addition, comparison with land surface models and in-situ data showed good correlation (Albergel et al., 2013). However, the

long soil moisture record is not homogeneous because of sensor degradation as well as differences in sensor characteristics,

algorithms, and calibration (Liu et al., 2012). Therefore we used the period 2002 – 2012 only. Because only a limited number

of models was able to provide surface soil moisture we have chosen to evaluate root zone soil moisture from the models

with the remote sensing product. Although this may seem to be a large mismatch, the fact that we compare monthly average10

data should filter out the fast topsoil moisture fluctuation and make it more comparable. When comparing the results of the

global models, the obtained differences are a result of the imperfections in the meteorological forcing, the model uncertainty

– including parameterisation and representative depth of the soil moisture – and the uncertainty in the soil moisture product.

Global scores range from 0.45 for SWBM to 0.61 for HTESSEL and JULES with the ensemble mean score being very close to

the best model at 0.60. Figure 8 shows the results for Australia and Southeast Asia. A recent study that used remotely sensed15

soil moisture to update the state of the PCR-GLOBWB hydrological model over a catchment in Australia (López López et al.,

2016) showed significant improvement in simulated discharge after including the remotely sensed soil moisture, demonstrating

that the hydrological models can benefit from the remotely sensed SSM. Conversely, Orth et al. (2013) showed that calibrating

the SWBM against discharge only, yielded well represented soil moisture dynamics.

Beck et al. (2016a) compared the set of model outputs described in this paper with discharge from 966 medium-sized20

catchments and demonstrated that the calibrated models showed best performance and that, on average, for the uncalibrated

models the hydrological models performed better than the land surface models in snow-dominated regions. They also show

that for example ORCHIDEE performs well in cold regions but tends to underestimate runoff in the other parts of the globe.

15
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Figure 7. Difference in peak snow cover (SC) month for the models compared to the IMS dataset.

This seems to be confirmed by the SC and SWE results for ORCHIDEE, and by its ET results that indicate that ORCHIDEE

overestimates ET in high-ET regions. Combining the results of Beck et al. (2016a) and the current results also shows that the

models that have been calibrated on discharge do not necessarily give the best results for the variables we have used here. This

is especially true for the HBV-SIMREG model which provides best results for discharge but has overall lowest scores when

comparing it to the other datasets.5

3.3 Continental water budget

Table 5 summarises the global water budget of all the models. The continental runoff totals for all models apart from OR-

CHIDEE (where runoff also includes the excess water flowing off floodplains and irrigated areas: de Rosnay et al., 2003) have

been derived from the specific runoff per grid cell. As such the runoff into internal continental basins that do not drain into the

ocean (endorheic basins) is included in the estimates and evaporation and abstractions from the routed water are not included10

(except for ORCHIDEE where the evaporation in floodplains and abstraction for irrigation are included). The spread in runoff
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Figure 8. Soil moisture anomaly dynamics and climatology over Australia and Southeast Asia for all models compared to ESA CCI SM.
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Table 5. Mean evaporation and runoff for the whole period compared to the change in storage of the total moisture component of each model.

Mean precipitation for the whole period using the common land surface mask was 863 [kg/m2/yr]. Surface water storage and storage in snow

and glaciers is not taken into account. A positive change in storage indicates the model lost water storage during the simulation period.

Model Total Evaporation Runoff ∆ storage

[kg/m2/yr] [kg/m2/yr] ([km3/yr]) [kg/m2]

HBV-SIMREG 529 353 (48945) 1.5

HTESSEL-CaMa 576 287 (39785) 21.5

JULES 524 355 (49239) 11.5

LISFLOOD 480 403 (55877) -9.3

ORCHIDEE∗ 598 278 (38652) 9.4

PCR-GLOBWB 511 354 (49096) 3.2

SURFEX-TRIP 561 301 (41818) -8.8

SWBM 519 354 (49129) 7.9

W3RA 518 344 (47721) 3.1

WaterGAP3∗∗ 549 306 (42415) –

Ensemble Mean 537 334 (46268) 4.4

∗Runoff results have been obtained using the routed discharge and not the grid cell specific runoff as in the other models.
∗∗Change in storage for WaterGAP3 is not shown here because it only supplies root-zone storage.

is fairly large (see Figure 9) and must originate from the difference in model concepts and parameterisation (including the

available energy partitioning) since the atmospherical forcing data used is identical for all models. Runoff is increasing after

1997 in all models. As can be seen from the top panel of Figure 9 this is due to the elevated precipitation during the same

period making more moisture available for both evaporation and runoff. As demonstrated by Figure 10 the results plot closely

to the Precipitation minus Runoff line with the LSMs generally showing more evapotranspiration and less runoff compared to5

the GHMs. Yearly continental runoff (excluding Antarctica and Greenland) from the ten models ranges between 38652 and

55877 km3/yr with an ensemble mean of 46268 km3/yr. The lower estimates compare well with findings from Clark et al.

(2015) (44200 ± 2660 km3/yr) while the ensemble mean compares well with the WATCH-based simulations of 49680 km3/yr

(Clark et al., 2015) and the results by Haddeland et al. (2011) (42000 to 66000 km3/yr), but are higher than estimates by van

Dijk et al. (2014) (20909 km3/yr, based on 430 basins estimated to cover 90% of global Runoff) and Dai et al. (2009) (3728810

km3/yr).
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Figure 9. Global mean yearly precipitation (top panel) and runoff [kg/m2/yr] for all models (bottom panel). The thick black line represents

the ensemble mean.
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Figure 10. Average runoff plotted against average total evaporation (both expressed in kg/m2/yr) for all models. The solid line represents the

input precipitation minus runoff. For this line we used 863 kg/m2/yr which is the average calculated over all grid cells that have values for

each model.

4 Data Provenance and Structure

All data are made available via the eartH2Observe server which can be accessed via the WCI portal (http://wci.earth2observe.eu,

see Figure 1) which offers plotting and collaboration features, or direct via a THREDDS server allowing access via OPeN-

DAP, WCS WMS and direct HTTP download (ftp is also supported). The main servers are hosted at PLMA-Ltd (Ply-

mouth, United Kingdom) and a mirror server is hosted at Deltares (Delft, The Netherlands). Data is stored on the server5

in netCDF-cf compliant files. All data generated for this paper is freely available via the OCD Open Database Licence

(http://opendatacommons.org/licenses/odbl/summary/). DOI: http://doi.org/10.5281/zenodo.57760.

5 Conclusions and outlook

For most of the variables we have found that the ensemble of land-surface and hydrological models gives satisfactory results

and the agreement between the models is good for large parts of the continental earth. The multi-model agreement in terms of10

monthly anomalies using the signal-to-noise ratio (SNR) provided an insight into the main regions/variables where the dataset

shows a reduced multi-model agreement: (i) snow-dominated regions (in all three variables – evapotranspiration, runoff and

root zone soil moisture) and (ii) tropical rainforest and monsoon regions (only for evapotranspiration). Furthermore, the SNR

of an ensemble of precipitation datasets was calculated, indicating a large uncertainty of precipitation in the tropics, which is
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not reflected in the ensemble runoff from the models. In cold regions the precipitation uncertainty derived from the available

datasets is small compared to the uncertainty of the multi-model simulations. This suggests that the model cold processes are

an important factor in this multi-model disagreement. However, in these regions there are no satellite estimates and a limited

number of rain gauges which means that the current global datasets most probably underestimate the precipitation uncertainty

in those regions.5

The ability of the multi-model ensemble to model total water storage dynamics at the scale of the GRACE data is generally

good although models predict the peak in total water storage earlier in all regions. The fact that the phase difference is largest

in the cold zones also indicates that there are difficulties in modelling the snow pack. This is in line with the observation of

Beck et al. (2016a) that the models tend to produce the snowmelt runoff peak too early. Getting SWE right is difficult for

the models, and the results of the verification with the GlobSnow data strengthen the results of the SNR analysis (and the10

TWSA analysis), which point to cold regions as regions with low inter-model agreement. It is one of the few cases where the

multi-model performance is markedly lower than the performance of the best model.

Although the scores indicate a good performance of the the ensemble, the evapotranspiration estimates are higher than those

by the benchmark datasets. This, combined with the large spread within the ensemble itself indicates that the ET estimates

have a large uncertainly and further work is needed to improve the results. It also shows that in future versions of the dataset15

potential ET (PET) and net radiation should also be reported by all models as the choice of PET calculation method and net

radiation estimate may be large contributors to the recorded spread in ET estimates.

The current study shows a wide spread in runoff into the oceans derived from the set of models used. The large range stems

from a combination of different total evaporation values and different storage dynamics in the models due to the different

concepts and parameterisation of runoff generation. Given the large spread it seems plausible that the ensemble mean provides20

the most reliable estimate of the global water fluxes although there is no independent way of testing this assumption.

At the global level the multi-model ensemble mean provides the best (or close to the best) performance for most of the

variables we investigated using the ILAMB system although caution should always be used. Beck et al. (2016a) concluded

similarly in their investigation of the current ensemble with respect to global discharge. The main exception is SWE where the

ensemble mean is not the bets performer. Furthermore, the results for TWSA for WaterGAP3 should probably be discarded25

as we do not have all the required information. At the regional level the picture is less clear. This means that although the

ensemble mean can be regarded as a best first estimate, a look at the regional results is required for basin-scale applications of

the current results.

The above shows a couple of areas of importance for further development of global models and datasets and the current set in

particular: precipitation estimates in the tropics, cold weather processes and evapotranspiration losses. This does not mean that30

other processes are already properly represented in the global models and that the influence of these processes is not important

or not reflected in the current results. In particular for snow precipitation we rely on reanalysis mostly and the uncertainty in the

SWE estimates could also stem from snow input. Work on improving the precipitation estimates has been started by creating a

merged precipitation product (Beck et al., 2016c) that may help to improve the forcing input.
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Constraining models with soil moisture may reduce the spread in evapotranspiration rates and discharge estimates (see

e.g. López López et al. 2016) while van Dijk et al. (2014) demonstrated that the use of satellite-derived total water storage

can be successfully used to constrain global hydrological models. When combining different data sources estimating the errors

associated with them becomes very important. This may be done using error models that allow for error propagation for various

scenarios of data assimilation and data source sampling (Anagnostou et al., 2010). We plan to combine this in a future version5

of the multi-model ensemble that includes uncertainty envelopes (Nikolopoulos et al., 2010) and error estimates for runoff and

other hydrological variables.

One way of making the forcing data and model results more relevant for basin-scale studies is by including higher-resolution

model runs. Several of the models will be running at a higher resolution in a future set of runs and the common resolution will be

increased to 0.25◦ resolution. In addition, the WaterWorld model (a web based hydrological model based entirely on provided10

global datasets Mulligan 2012) will be run at 10km resolution at the global scale and will form part of the continuing model

inter-comparisons beyond this paper.

A literature search reveals that the data we produced has already been used by several other researchers including a study

investigating vegetation-atmosphere coupling (Zscheischler et al., 2015). This demonstrates the value of open data that is easy

to access and comes with little restrictions on its use. Furthermore, the hydrological simulations that are performed within the15

eartH2Observe project can be reproduced by other groups by accessing the forcing data on the data server.
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Appendix 1: Signal-to-noise ratio

The signal-to-noise ratio (SNR) of the multi-model ensemble was computed as the ratio between the external variance (Vext)

and the internal variance (Vn) as:

SNR =
Vext

Vn
,Vext =

√
V 2

h + V 2
n (1)35
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Here Vh is the total variance with the internal and total variances computed as:

V 2
h =

1
NM − 1

N∑

i=1

M∑

j=1

(yi,j − y)2 (2)

V 2
n =

1
NM −N

N∑

i=1

M∑

j=1

(yi,j − yi)
2 (3)

and y is defined as:5

y =
1

NM

N∑

i=1

M∑

j=1

yi,j (4)

with yi:

yi =
1
N

N∑

j=1

yi,j (5)

In the above, yi,j is the value for the ensemble member j and time i, with M the number of ensemble members and N the

length of the time series, y is the total temporal and ensemble mean and yi is the ensemble mean.10

Appendix 2: Summary of ILAMB results

31

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 6 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



Ta
bl

e
6.

G
lo

ba
lV

ar
ia

bl
es

su
m

m
ar

y

M
ea

n

M
od

el

H
T

E
SS

E
L

-

C
aM

a

JU
L

E
S

L
IS

FL
O

O
D

O
R

C
H

ID
E

E
PC

R
-

G
L

O
B

W
B

SU
R

FE
X

-

T
R

IP

SW
B

M
W

3R
A

W
at

er
G

A
P3

H
B

V
-

SI
M

R
E

G

So
il

M
oi

st
ur

e

A
no

m
al

y

0.
60

0.
61

0.
61

0.
60

0.
57

0.
59

0.
60

0.
45

0.
60

0.
51

0.
58

E
va

po
tr

an
sp

ir
at

io
n

0.
81

0.
79

0.
80

0.
80

0.
76

0.
78

0.
77

0.
78

0.
81

0.
70

0.
78

Sn
ow

W
at

er

E
qu

iv
al

en
t

0.
67

0.
64

0.
66

0.
71

0.
74

0.
60

0.
67

0.
61

0.
67

0.
74

0.
48

Sn
ow

C
ov

er
0.

88
0.

87
0.

88
-

0.
83

-
0.

89
-

0.
85

0.
85

-

Te
rr

es
tr

ia
l

W
at

er

St
or

ag
e

A
no

m
al

y

0.
63

0.
62

0.
59

0.
56

0.
53

0.
59

0.
59

0.
52

0.
62

0.
53

0.
60

32

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 6 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



Table 7. Diagnostic Summary for Soil Moisture Anomaly: Model vs. ESA-CCI

Annual

Mean

(m3/m3)

Bias

(std-

dev)

RMSE

(m3/m3)

Phase

Differ-

ence

(months)

Global

Bias

RMSE Seasonal

Cycle

Spatial

Distribu-

tion

Interannual

Variability

Overall

MeanModel 0.02 -0.01 0.02 -0.23 0.63 0.4 0.70 0.81 0.48 0.6

HTESSEL-CaMa 0.04 0.00 0.02 -0.33 0.72 0.38 0.68 0.74 0.53 0.61

JULES 0.02 -0.01 0.02 -0.47 0.67 0.38 0.67 0.84 0.05 0.61

LISFLOOD 0.03 0.00 0.02 0.30 0.72 0.38 0.67 0.76 0.49 0.6

ORCHIDEE 0.02 -0.01 0.03 -0.3 0.61 0.37 0.64 0.73 0.51 0.57

PCR-GLOBWB 0.04 0.00 0.02 0.06 0.68 0.40 0.69 0.65 0.51 0.59

SURFEX-TRIP 0.02 -0.01 0.02 -0.58 0.65 0.38 0.67 0.78 0.51 0.6

SWBM 0.01 -0.02 0.02 -0.14 0.47 0.39 0.67 0.28 0.42 0.45

W3RA 0.02 -0.01 0.02 -0.41 0.62 0.42 0.7 0.80 0.45 0.60

WaterGAP3 0.01 -0.02 0.02 -0.61 0.52 0.39 0.64 0.57 0.41 0.51

HBV-SIMREG 0.02 -0.01 0.02 -0.17 0.58 0.42 0.72 0.72 0.45 0.58

Table 8. Diagnostic Summary for Evapotranspiration: Model vs. GLEAM-V3B

Annual

Mean

(mm/day)

Bias

(mm/day)

RMSE

(mm/day)

Phase

Differ-

ence

(months)

Global

Bias

RMSE Seasonal

Cycle

Spatial

Distribu-

tion

Interannual

Variability

Overall

MeanModel 1.48 0.21 0.30 -0.06 0.86 0.83 0.81 0.95 0.69 0.83

HTESSEL-CaMa 1.60 0.33 0.36 -0.10 0.84 0.80 0.77 0.96 0.66 0.81

JULES 1.45 0.18 0.35 -0.27 0.84 0.80 0.77 0.93 0.70 0.81

LISFLOOD 1.33 0.06 0.37 -0.21 0.84 0.79 0.79 0.93 0.69 0.81

ORCHIDEE 1.66 0.39 0.44 -0.22 0.81 0.76 0.70 0.94 0.67 0.77

PCR-GLOBWB 1.42 0.15 0.39 -0.52 0.83 0.78 0.77 0.95 0.65 0.79

SURFEX-TRIP 1.55 0.28 0.39 0.25 0.85 0.78 0.75 0.96 0.61 0.79

SWBM 1.43 0.16 0.43 0.11 0.83 0.76 0.80 0.89 0.69 0.79

W3RA 1.44 0.17 0.32 0.13 0.86 0.82 0.85 0.95 0.66 0.83

WaterGAP3 1.45 0.18 0.58 -0.19 0.78 0.69 0.82 0.77 0.58 0.72

HBV-SIMREG 1.47 0.20 0.39 0.16 0.84 0.78 0.81 0.94 0.64 0.80
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Table 9. Diagnostic Summary for Snow Water Equivalent: Model vs. GLOBSNOW

Annual

Mean

(kg/m2)

Bias

(kg/m2)

RMSE

(kg/m2)

Phase

Differ-

ence

(months)

Global

Bias

RMSE Seasonal

Cycle

Spatial

Distribu-

tion

Interannual

Variability

Overall

MeanModel 29.50 20.20 7.90 0.70 0.74 0.65 0.95 0.32 0.73 0.67

HTESSEL-CaMa 49.90 40.60 7.20 0.50 0.73 0.67 0.95 0.06 0.73 0.64

JULES 21.30 12.00 5.90 0.30 0.67 0.68 0.96 0.29 0.69 0.66

LISFLOOD 21.10 11.80 9.30 0.90 0.70 0.57 0.92 0.79 0.73 0.71

ORCHIDEE 6.90 -2.40 5.70 -0.20 0.62 0.66 0.97 0.86 0.66 0.74

PCR-GLOBWB 53.00 43.70 9.80 0.90 0.72 0.60 0.92 0.03 0.72 0.60

SURFEX-TRIP 27.10 17.90 6.50 0.50 0.73 0.68 0.95 0.26 0.73 0.67

SWBM 26.50 17.20 13.80 0.90 0.58 0.42 0.93 0.56 0.75 0.61

W3RA 17.90 8.60 6.30 0.80 0.75 0.67 0.94 0.26 0.74 0.67

WaterGAP3 14.50 5.20 7.20 0.80 0.70 0.62 0.94 0.86 0.70 0.74

HBV-SIMREG 57.30 48.00 22.80 1.00 0.55 0.41 0.91 0.03 0.57 0.48

Table 10. Diagnostic Summary for Snow Cover: Model vs. IMS

Annual

Mean

(snow/

snow+land)

Bias

(snow/

snow+land)

RMSE

(snow/

snow+land)

Phase

Differ-

ence

(months)

Global

Bias

RMSE Seasonal

Cycle

Spatial

Distribu-

tion

Interannual

Variability

Overall

MeanModel 29.50 20.20 7.90 0.70 0.74 0.65 0.95 0.32 0.73 0.67

HTESSEL-CaMa 49.90 40.60 7.20 0.50 0.73 0.67 0.95 0.06 0.73 0.64

JULES 21.30 12.00 5.90 0.30 0.67 0.68 0.96 0.29 0.69 0.66

LISFLOOD 21.10 11.80 9.30 0.90 0.70 0.57 0.92 0.79 0.73 0.71

ORCHIDEE 6.90 -2.40 5.70 -0.20 0.62 0.66 0.97 0.86 0.66 0.74

PCR-GLOBWB 53.00 43.70 9.80 0.90 0.72 0.60 0.92 0.03 0.72 0.60

SURFEX-TRIP 27.10 17.90 6.50 0.50 0.73 0.68 0.95 0.26 0.73 0.67

SWBM 26.50 17.20 13.80 0.90 0.58 0.42 0.93 0.56 0.75 0.61

W3RA 17.90 8.60 6.30 0.80 0.75 0.67 0.94 0.26 0.74 0.67

WaterGAP3 14.50 5.20 7.20 0.80 0.70 0.62 0.94 0.86 0.70 0.74

HBV-SIMREG 57.30 48.00 22.80 1.00 0.55 0.41 0.91 0.03 0.57 0.48
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Table 11. Diagnostic Summary for Terrestrial Water Storage Anomaly: Model vs. GRACE

Annual

Mean

(m3/m3)

Bias

(std-

dev)

RMSE

(m3/m3)

Phase

Differ-

ence

(months)

Global

Bias

RMSE Seasonal

Cycle

Spatial

Distribu-

tion

Interannual

Variability

Overall

MeanModel 5.73 -1.17 3.43 -0.43 0.63 0.47 0.83 0.62 0.58 0.63

HTESSEL-CaMa 6.62 -0.28 3.55 -0.53 0.61 0.47 0.82 0.67 0.54 0.62

JULES 5.14 -1.76 3.59 -0.59 0.62 0.47 0.81 0.51 0.55 0.59

LISFLOOD 4.77 -2.13 4.04 -0.42 0.60 0.43 0.81 0.39 0.55 0.56

ORCHIDEE 6.12 -0.78 3.98 -0.66 0.60 0.46 0.79 0.25 0.53 0.53

PCR-GLOBWB 8.88 1.98 4.08 0.00 0.55 0.43 0.82 0.69 0.46 0.59

SURFEX-TRIP 8.40 1.50 4.91 -0.49 0.59 0.41 0.82 0.60 0.54 0.59

SWBM 7.58 0.68 4.82 -0.42 0.50 0.36 0.80 0.44 0.49 0.52

W3RA 6.36 -0.54 3.97 -0.54 0.63 0.42 0.82 0.64 0.57 0.62

WaterGAP3 2.81 -4.09 5.07 -0.86 0.49 0.40 0.75 0.53 0.46 0.53

HBV-SIMREG 5.81 -1.09 4.19 -0.56 0.61 0.41 0.82 0.61 0.55 0.60
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